Astrophysicists are making astonishing discoveries through data from powerful new technologies—and raising exciting new questions about our universe.

Astrophysicists study the physics of the universe along with the interactions between various objects of outer space. They interpret observational data with mathematics and physical laws.

Astrophysicists typically apply many disciplines of physics, including mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum mechanics, relativity, nuclear and particle physics, and atomic and molecular physics.

Student Experiences

Student Group Spotlight: [American Institute of Aeronautics and Astronautics](#)

Meet Our Alumni

Faculty Profile: Prof. Robert Gehrz
I'm enthralled by dirt -- at least the astronomical kind. The dust out of which our planet formed, originally came from the stars. For many years, I have been studying the conditions under which this dust condenses out of hotter gases. Novae, for
example, are stars that undergo non-fatal explosions that expel enormous amounts of dust into space. I have played major roles in the decades-long planning and development of the Spitzer Infrared Telescope, now bringing us spectacular images of our dusty space environment. I am looking forward to using the infrared-optimized LBT to study dust in interesting systems such as the RY Scuti binary system, with two stars orbiting each other so closely that they touch.

You might also explore

Astrophysics (B.A.)
Mathematics
Physics

Associated Careers

Computational Astrophysicists, Cosmologists, Planetarium Technicians, Planetary Scientists, Professors, Research Equipment Designers, Solar Astronomers, Support Astronomers, Telescope Engineers, University Researchers

Admission Information

FRESHMAN:
admission information

TRANSFER STUDENTS:
Requirements for the College of Science and Engineering